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Using analytical calculations and computer simulations, we study binary AB and ternary ABC membranes
that respond to an external stimulus by interconverting A and B components. The C component is assumed to
be nonreactive and is incompatible with both A and B. We also assume that A and B have different spontaneous
curvatures. The dynamics of the ternary system is described in terms of three order parameters: two specify the
local composition and a third characterizes the local height of the membrane. Our description of the two-
component membrane is based on a recent model proposed by Reigada er al. [Phys. Rev. E. 72, 051921
(2005)]; we extend the latter approach by explicitly including the effects of the membrane’s surface tension on
the phase behavior of the system. By performing a linear stability analysis, we determine the behavior of the
reactive AB membrane for a given bending elasticity and surface tension at different values of the reaction rate
coefficients. We also numerically integrate the governing dynamic equations, and the results of these simula-
tions are in agreement with the analytical predictions. For the two-component membranes, we calculate two
critical values of the reaction rate coefficients, which define the behavior of the system, and plot the phase
diagrams in terms of different parameters. We illustrate that the surface tension of the membrane strongly
affects these critical values of the reaction rate coefficients and therefore the location of the phase boundaries.
We also pinpoint the regions on the phase diagram where the late-time behavior is affected by the initial
fluctuations, i.e., where such a reactive system has some “memory” of its prior state. In the case of the
three-component system, we show that the presence of the nonreactive C component strongly affects the
composition and topology of the membrane, as well as critically altering the propagation of the traveling waves

within the system.
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I. INTRODUCTION

The chemical heterogeneity and physical diversity inher-
ently present in biological membranes contribute to their
amazingly rich, nonequilibrium dynamical behavior. In turn,
this complex dynamical behavior controls a variety of func-
tions, such as signaling, molecular recognition, and transport.
Theoretical and computational modeling allows us to de-
velop a greater understanding of various processes that char-
acterize the dynamics of these membranes—from specific
reactions and diffusion processes within the membrane to the
interaction between the membrane and the surrounding
solutions—and to predict the response of the membrane to
the external stimuli. By isolating critical factors that contrib-
ute to specific dynamic behavior in biological membranes,
theoretical studies can also provide design rules for creating
biomimetic, synthetic membranes. In particular, studies into
the kinetic aspects of self-assembly and various functions in
lipid membranes can lead to designing new classes of mate-
rials that are capable of performing advanced technological
functions [1], such as dynamic restructuring due to external
stimuli, self-replication, or self-healing.

In the current work, we use theoretical and computational
modeling to examine the nonequilibrium dynamics of model,
reactive membranes. To control the dynamics of reactive
membranes, one can potentially utilize various external
stimuli (e.g., light or a flux of external reactants) to alter the
rates of reactions that are occurring within the system.
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Herein, we focus on establishing guidelines for harnessing
such stimuli to drive the membranes to perform specific
functions, such as dynamic restructuring or “sensing” and
responding to concentration gradients within the system. In
spite of the significant progress that has been made in under-
standing the behavior of both biological and synthetic mem-
branes [2,3], the nonequilibrium dynamics of such reactive
membranes has received considerably less attention. Re-
search relevant to our efforts includes work by John and Bar
[4], who used mathematical modeling to study the interplay
between a number of kinetic processes, including the phase
separation between proteins and lipids and the attachment
and detachment of proteins to and from the lipid membrane
in the presence of regulating enzymes. They showed [4] that,
for sufficiently high enzymatic activity, traveling domains of
lipids and proteins could appear in the system. Such travel-
ing domains allow the membrane to undergo a faster restruc-
turing and to respond to spatial gradients in the environment.

In the above example, the multicomponent reactive mem-
brane was considered to be flat. Here, we are interested in the
situation where both the composition and the shape (curva-
ture) of the membrane can be controlled dynamically (via,
for example, external light source or flux of the reactants in
the outside solution). A number of studies [5-10] showed
that different active inclusions (such as proteins), which are
localized in the membrane, could directly affect the shape of
the membrane. Moreover, such proteins can be activated by
external light [6] and thus the external stimuli can be used to
dynamically control the shape of the membrane. Finally,
Petrov er al. [11] showed experimentally that the magnitude
and the sign of the membrane’s curvature can be controlled
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by photoinduced chemical reactions in bulk aqueous solu-
tions.

With respect to the theoretical modeling of reactive mul-
ticomponent membranes, Reigada er al. [12] introduced a
phenomenological description of a reactive bilayer in which
two differently shaped components A and B undergo an ex-
ternally controlled interconversion reaction. The fact that the
A and B lipids have different shapes results in different cur-
vatures of the A and B domains. They showed that, in the
case where the A and B components phase separate, the bi-
layer forms stationary patterns of spatially different compo-
sition and curvature; the characteristic length scale of such
patterns is defined by the reaction rate coefficient for the
interconversion of the A and B components. Later, the same
researchers [13] introduced a more sophisticated approach in
which they also assumed that the reaction process actively
affects the curvature of the membrane. Such a direct cou-
pling of the external reaction to the local curvature resulted
in the generation of traveling waves within the reactive bi-
layer.

In this work, we study two- and three-component mem-
branes in which an external stimulus initiates a chemical re-
action that interconverts two of the components, A and B.
The third component C is assumed to be nonreactive and is
incompatible with the A and B components, which have
specified spontaneous curvatures. The description of the bi-
nary mixture is based on the above model proposed by
Reigada et al. [13]; we have, however, extended the latter
approach by explicitly including the effects of the surface
tension of the membrane. As we show below, for the two-
component (AB) reactive membranes, the phase boundaries
within the calculated phase diagrams are highly dependent
on the surface tension of the membrane. In addition, we iso-
late situations where the late-time behavior of the binary sys-
tem strongly depends on the initial fluctuations, i.e., where
such reactive membranes have some “memory” of their prior
state. For the three-component reactive membrane, we illus-
trate how the presence of the nonreactive C component af-
fects the dynamical patterns and leads to systems with novel
morphologies.

On a fundamental level, the studies of reactive multicom-
ponent membranes can enhance our understanding of the
coupling of chemical reactivity, mechanical deformation, and
morphological transitions, and reveal rich dynamic behavior
that results from a chemomechanical coupling. Furthermore,
investigations in this direction could potentially be useful for
establishing means of harnessing the conversion of chemical
energy into the desired mechanical behavior and, ultimately,
the specified morphological transition. Advances in this area
can open up new means of driving the self-assembly of mul-
ticomponent films into well-defined structures, ranging from
well-controlled surface corrugation to more complex three-
dimensional objects.

II. THE MODEL

We consider a flexible membrane composed of a ternary
ABC mixture, where all components are mutually immis-
cible. The height of the membrane in the z direction, 4, is a
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function of the local composition in the x,y plane, i.e., &
= h(x,y); this height is calculated with respect to a flat, un-
distorted membrane. We assume that, in response to an ex-
ternal stimulus, the A and B components of the mixture un-

dergo a reversible chemical reaction A« B, where I', (I'_) is

r

the rate coefficient for the forward (reverse) reaction, and the
C component is nonreactive. We further assume that the A
and B domains exhibit different spontaneous curvatures.
Such membranes could represent a polymeric bilayer and A
might be a group of lipids, biomolecules, or isomers of an
amphiphilic azobenzene derivative that exhibits a particular
curvature, while the B group displays a dissimilar curvature
[12,13]. The C component might be any nonreactive group
or even an impurity, which does not have spontaneous cur-
vature and is immiscible with the A and B components. The
interconversion reaction between A and B can be understood,
for example, as an isomerizationlike chemical transformation
[12,13]. This interconversion reaction changes the local com-
position of the membrane, and, in addition, can exert a local
mechanical force on the membrane, i.e., locally “kick” the
membrane, and, therefore, directly modify the local curva-
ture of the layer [13].

We describe the composition of the membrane in terms of
two order parameters: ¢=p,—pp is the difference between
the concentrations of the A and B components within the xy
plane, and ¢=p is the concentration of the C component
within the x,y plane [14,15]. Following Refs. [12,13], we
use the Monge representation and describe the deformation
of the membrane in terms of the height field A(x,y), which
represents local deviation of the membrane position with re-
spect to the flat, undistorted surface. Such a description is
valid for relatively small deformations with respect to the flat
surface.

The evolution of the membrane is assumed to be gov-
erned by the following set of equations [12-15]:

p SF
& M= T, (1)
ot o
P SF
Ly Sy ®)
ot oY
oh SF
AT 3
py o ®¢, (3)

where M; is the mobility of the ith order parameter. In the
above, we assume that the forward and reverse reaction rate
coefficients are equal, i.e., '=1,/2=I"_/2. We note that,
while Egs. (1)—(3) represent the first description of such a
reactive, three-component membrane, they can be reduced to
a number of known limiting cases, as we discuss in detail
below.
The form of the free energy functional F is taken to be
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S,y here is the surface area of membrane in the x, y plane.
The local free energy fo(¢, ) in Eq. (4) is chosen to ensure
that the mutually immiscible A, B, and C components phase
separate [14-16]:

fo(<P,lﬂ)=—020<P2+a40¢4+002%”2—0031ﬁ%+ao4¢4+022<P2¢2-
(5)

All the coefficients in Eq. (5) are positive (if all three com-
ponents are immiscible). We determine the actual values of
the coefficients a;; in Eq. (5) by requiring the local free en-
ergy to have equal minima at ¢==+1, =0 [which corre-
sponds to the pure A (B) phase] and ¢=0, =1 (which cor-
responds to the pure C phase). Moreover, we require the
local free energy to be symmetric with respect to all three of
the components. In particular, we choose [15]

ay=0.5ay), agp=3ay, ap=8ay, du=45a,

ayp=3ay, day=0.5. (6)

The other important features of the membrane are de-
scribed by following terms in Eq. (4): the second term ex-
presses the effects of the lateral surface tension of the mem-
brane, the third term details the interfacial tension between
the A and B components within the film, and the fourth term
details the interfacial tension between the C and A (B) com-
ponents. Finally, the last term in Eq. (4) specifies the elastic
energy of the film due to its rigidity, where « is the bending
modulus [3]. In this last term, we assumed a linear depen-
dence of the local equilibrium curvature on the composition
[12], H,,(¢) = @H,. With respect to the ternary mixture, this
choice for the local curvature ascribes a preferentially flat
topology for the C component. In particular, in regions of
pure C, =1 and ¢=0 [according to Eq. (5)]. Consequently,
H,,(¢)=0 for pure C domains. Such a scenario constitutes
the simplest and the most straightforward case. We note,
however, that by modifying the local curvature term in the
free energy expression in Eq. (4), the above formalism can
be readily adapted to study multicomponent films in which
the C component also has a given spontaneous curvature.

Following Reigada er al. [13], we take into account that
the externally controlled reaction affects not only the local
composition, but also the local shape of the film. The effect
of the reaction on the local composition is explicitly included
through the last term on the right-hand side of Eq. (1). The
direct effect of the reaction on the local shape is introduced
through the last term in Eq. (3), where £ is the strength of the
latter effect. The local mechanical force exerted on the mem-
brane due to the external reaction is assumed to act in the
same direction as the preferred curvature of the product of
the reaction [13].

Given the form of the free energy in Eq. (4), we can
rewrite Egs. (1)—(3) as follows:

PHYSICAL REVIEW E 75, 051906 (2007)

I Ifole, )
P = M¢V2(—a¢ - 7¢V2<p + KH%(p - kH\V’h | -To,
(7)
—=M V2<— -y, V2, 8
o W o Yy W (8)
oh ) )
EthV (oh+ kpHy— kV°h) + €. 9)

Before carrying out a detailed analysis of these equations,
we first describe some limiting cases of the above model. If
the C component is absent (i.e., the membrane consists of the
two reactive components A and B), our model would reduce
to the model proposed in Ref. [13], except that we explicitly
include the surface tension of the membrane [see the second
term in Eq. (4)]. In addition, if the C component is absent
and there is no variation in the height of the membrane (i.e.,
H,=0 and h=0), the above model further reduces to a well-
known model for block copolymers [17,18] or reactive poly-
mer blends [19,20]. In this case, the evolution of the reactive
AB system is governed solely by the reduced form of Eq. (7),
and the morphology of the mixture resembles the lamellar
structure formed by microphase-separated, symmetric
diblock copolymers [19,20]. And, finally, if all three phase-
separating components are present and the A and B compo-
nents undergo a reversible interconversion, but there is no
variation in the height of the film (i.e., Hy=0 and h=0), the
above model reduces to our recent model of ternary reactive
polymer blends [16,21,22].

In the simulation results presented below, we numerically
integrate Eqs. (7)-(9) on a square lattice of size 200X 200
sites (unless specified otherwise) with a mesh size of A=1
and periodic boundary conditions. We use an explicit finite
difference method; to calculate the Laplacian operators, we
employ an isotropic discretization, as defined in the cell dy-
namics method [23]. The latter approach significantly im-
proves the numerical stability of the simulations and allows
us to choose a relatively large time step. In the simulations
below, we use the time step Ar=2X 1072, which ensures
high numerical accuracy. (We note that we conducted a num-
ber of simulations with a time step of Ar=2X 1074, as well
as with a smaller mesh size of A=0.5 and found that the
results were identical to those obtained with the chosen time
step and mesh size given above.) Unless specified otherwise,
we use the following values for the dimensionless param-
eters for the binary mixture: M =1, M;=1, k=0.5, Hy=0.2,
¥o=1, £€=5 (these values are chosen to be the same as the
values in Ref. [13]), and ¢=0.05. For the C component, we
set My,=1/3 and y,=3. We note that the specific choice of
Yy=37v, and M =M ,/3 corresponds to ternary mixtures in
which the interfacial tensions between A and B, A and C, and
B and C (as well as the mobilities of all three different com-
ponents) are identical (see Ref. [15]).

In the section below, we first conduct a linear stability
analysis of the uniform state and illustrate the possible late-
time scenarios for membranes composed solely of the A and
B components. Then we provide a detailed analysis of the
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different states of such binary systems and plot the phase
diagrams in the (I', ¢) and (I", o) planes. Finally, we consider
the three-component ABC membrane and show how the
presence of the nonreactive C component affects the evolu-
tion of the membrane.

III. RESULTS AND DISCUSSION
A. Linear stability analysis

For the case of AB reactive membranes (where the C
component is absent, or y=0), the uniform solution for Egs.

(7) and (9) is obtained with 7=0 and =0. (In fact, any
arbitrary constant value h'=const yields a uniform solution;

for simplicity, however, we choose the value of h=0 without
a loss of generality with respect to the following discussion.)
Below, we first define the stability of such a uniform, flat
solution for the given system parameters by performing a
linear stability analysis. We then compare the analytical pre-
dictions obtained from this linear stability analysis with the
results of our computer simulations.

The growth rate of the gth mode of the fluctuations from
the uniform state, w(g), can be found by solving the appro-
priate characteristic equation

det[L —w(g)I]=0. (10)

Here, I is an identity matrix and the matrix L is obtained by
the linearization of Egs. (7) and (9) for the gth mode of the

fluctuations of ¢ and A (from & and , respectively), leading
to the following expression:

I M - v,q" + ¢*(2ay - kHy)] - T
- MhKH0q2 + Fg

—M‘Pq4KH0
- My(kq* +q°0)
(11)

The roots of characteristic equation (10) are given by
w(q)= %[Tr(L) +Tr(L)*-4 det(L)] and define the stability of
the uniform solution. If, for the given system parameters,
Re[w(g)]<0 for any value of ¢ [see, for example, Fig. 1(a),

dashed line], then the uniform solution (h=0,3=0) is
stable and any fluctuations from this solution decay with
time. If Re[w(g)]>0 and Im[w(g)]=0 for some values of the
wave number g # 0, then stationary Turing-like patterns are
expected to occur. An example of the plot of w(g) for the
latter case is shown in Fig. 1(a) (solid line). All the fluctua-
tions with wave numbers between ¢; and g, [as marked in
Fig. 1(a)] will grow in such a system, and the late-time char-
acteristic length scale is defined by a value of ¢ that lies in
the interval between ¢, and ¢,.

If Re[w(g)]>0 and Im[w(g)]#0 at some values of ¢
# 0 [see Fig. 1(b)], then traveling waves are expected to be
observed in the system. Fluctuations with wave numbers be-
tween ¢, and g, [as marked in Fig. 1(b)] will grow in such a
system.

The wave bifurcation line, or {Re[w(q)]=0,Im[w(q)]
# 0}, delineates the region in phase space where traveling
waves are expected. The condition for this bifurcation is ob-
tained by requiring Tr(L)=0 and Det(L) <0. This line can be
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FIG. 1. (Color online) (a) Re[w(g)] for I'=0.126 (solid curve)
and 0.25 (dashed curve); here, £€=0. (b) Re[w(g)] (solid curve) and
Im[w(q)] (dashed curve) for I'=0.126 and £=6. (c) Re[w(q)] (solid
curve) and Im[w(q)] (dashed curve) for I'=0.13 and £=4.8. The
other parameters here and in all the simulation results below (unless
specified otherwise) are Hy=0.2, y=0.5, 0=0.05.

expressed in terms of the critical values of the reaction rate
coefficients as I‘=I‘f”", with the additional condition that I’
>T5" where the value of I'S is defined further below.
Here, we define I'{ in such a way that, for ['=I"C"", the
condition Tr(L) =0 is satisfied for a nonzero value of g. More
specifically, Fj‘”" can be rewritten through the system param-
eter as

(— 26120 + H(Z)K + 0')2
4(y,+ k)

rei=m (12)

¢

for £> ¢ where &', in turn, is defined from the condition
[=T¢"; we discuss both I'{™ and & in detail below. We
note that, for the case of =0, the condition in Eq. (12)
reduces to the expression given in Ref. [13]. We note that in
Eq. (12) and in all the following calculations, for simplicity
we set My=M,,.

If the reaction rate coefficient is sufficiently high, i.e., I
>F§’” (and &> &), then the components are completely
intermixed and the flat, uniform solution is stable. If, on the
other hand, I' < F?’" , then the system forms distinct patterns,
as we illustrate below. Equation (12) clearly shows that an
increase in the value of o, the surface tension of the mem-
brane, leads to a decrease in the critical value of the reaction
coefficient, I‘f’”. [The latter statement is valid if o<<(2ay
—H}k), which in turn is always valid for the parameters we
used throughout these studies.] In other words, an increase in
the membrane’s surface tension increases the phase space
where the flat, intermixed membrane is stable.

The second critical value of the reaction coefficient, Fg’”,
can also be found analytically from the condition that
Det(L)=0, but the full expression is cumbersome; therefore,
here we provide an approximate expression, which is valid
for small values of o. [We note that all of the following
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b)

conditions should be satisfied in order for this expansion in
terms of o to be valid: o<1, 0<H,, and o<k.] This ex-
pression reads

rerit < g ( a3 oH [ &ay — Hyk(1 + Hyé)]
? \ yo(1 + Hof) K(1+ Hyé)?

_ PHyydéay - Holaxné/4 + k(1 + H@)]})
axK*(1 + Hyé)? '

(13)

Finally, in Fig. 1(c), we plot Re[w(g)] (solid line) and
Im[w(g)] (dashed line) for the most complicated scenario.
Here, fluctuations with wave numbers between ¢, and ¢, [as
marked in Fig. 1(c)] will grow {Re[w(q)]> 0}; for these fluc-
tuations, Im[w(q)]# 0, therefore, we expect to observe trav-
eling waves with the characteristic wavelength ¢ € [q,,¢,].
In addition, fluctuations with wave numbers between ¢, and
q [see Fig. 1(c)] will grow as well. For these fluctuations,
however, Im[w(g)]=0 and hence we expect to see the sta-
tionary Turing-like patterns with the characteristic wave-
length ¢ € [¢,,q3]. Therefore, for reactive membranes char-
acterized by the parameters in Fig. 1(c), we expect to observe
the interaction between the stationary Turing-like and travel-
ing wave modes. While individual bifurcations and patterns
that emerge from the interactions between the Hopf and Tur-
ing or Hopf and traveling wave modes have been analyzed in
detail for a wide variety of reaction-diffusion systems (see,
for example, Refs. [24-27]), the interactions between the
stationary Turing and the wave modes have received much
less attention [28]. For example, one of the first studies of the
interaction between the stationary Turing and wave instabili-
ties was conducted only a couple of years ago by Yang et al.
[28] for the Brusselator and Oregonator models and uncov-
ered a large variety of spatiotemporal patterns, including
modulated Turing structures and combinations of Turing
structures and spiral waves. In our study, we pinpoint the
parameter region where the interactions between the Turing-
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FIG. 2. (Color online) (a) Or-
der parameter distribution within
the membrane according to the
scale bar with ¢(;=0.69 at the
simulation time step r=2X 10%
(b) The height of the membrane
for the same run (and same simu-
lation time) as in (a). Here, I’
=0.126 and £=0.

like and wave modes in reactive membranes can be ob-
served, and below provide examples of such structures.

Summarizing this section, we note that the expressions for
the critical values of the reaction rate constants given above
[see Egs. (12) and (13)] allow us to calculate phase diagrams
and therefore to predict the behavior of such two-component
reactive membranes, as well as to obtain insight into the
behavior of the three-component membrane, as we illustrate
further below. To facilitate the discussion, prior to detailed
studies of the phase behavior, we show a few representative
scenarios of the dynamics in such two-component reactive
systems. In particular, the parameters used in the above cal-
culations serve as the input to the numerical simulations; in
this manner, we can visualize the morphologies of the pre-
dicted structures. We note that in Sec. III C we show that the
phase diagrams obtained from the analytical calculations
show excellent agreement with the phase diagrams obtained
using the numerical simulations.

B. AB reactive film: Simulation results

Figure 2 shows an example of the Turing-like patterns in
the AB reactive membrane; Fig. 2(a) shows the spatial dis-
tribution of the order parameter ¢ in the xy plane, with the
relevant scale bar given below the image, and Fig. 2(b)
shows the height of the membrane, A(x,y), for the same run
(and the same simulation time step). For initial conditions in
our simulations, we choose a flat membrane [A(x,y)=0] with
the A and B components mixed [{¢(x,y))=0], i.e., the initial
order parameter distribution was taken as a random fluctua-
tion around zero, with the standard deviation taken to be
equal to 0.05 (unless specified otherwise). The same param-
eters that were used to calculate the growth rate w(g) in Fig.
1(a) (see solid line) were also used to generate the simulated
structure in Fig. 2. According to the analytical predictions,
fluctuations with wave numbers between ¢, and ¢, [see Fig.
1(a)] grow in such a system, and the characteristic length
scale at late times (i.e., the width of the lamellalike domains
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in Fig. 2), is defined by a value of ¢ that lies within the range
of [¢;.,q>]. We note that the patterns in Fig. 2 look identical
to the patterns observed in Ref. [12], despite the fact that we
used a nonzero value of the surface tension of the membrane.
The surface tension, however, affects the amplitude of the
undulations of the membrane height, while it does not affect
the characteristic length scale. We arrived at the latter con-
clusion by performing a series of simulations with different
values of o. Additional simulations also show that, the higher
the value of o, the smaller the amplitude of the height undu-
lations. However, as we discuss in the next section, the most
pronounced effect of the surface tension is on the position of
the phase boundaries on the phase diagrams. And, finally, we
note that in this example of the Turing-like pattern, as well as
in the following examples, an increase in the value of I’
increases the intermixing in the system, i.e., decreases both
the bulk value of the order parameter and the characteristic
width of the stripes.

Figure 3 illustrates an example of the traveling waves in
the AB reactive membrane. Figures 3(a) and 3(c) show the
spatial distribution of the order parameter ¢ in the xy plane,
and Figs. 3(b) and 3(d) show the height of the membrane,
h(x,y), for the respective runs, at relatively early and late
times. At early to intermediate times, we observe different
domains traveling in different directions [see the white ar-
rows marking the directions of propagation of the different
domains in Fig. 3(a)]. At later times, these domains become
more and more coherent, until the whole sample basically
consists of a single coherent domain, i.e., a set of parallel
stripes, traveling at a constant speed in a specific direction
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FIG. 3. (Color online) (a), (c)
Order parameter distributions ac-
cording to the scale bar in Fig.
2(a) with ¢3=0.35 for (a) and ¢,
=0.28 for (c) at simulation time
steps t=5X 10> and 4 X 10%, re-
spectively. (b), (d) The height of
the membrane for the same runs
and simulation time steps as in
(a), (c), respectively. Here, T’
=0.126 and £=6. For these param-
eters, I'"=0.14415 and T3
=0.1244.

[for example, from right to left in Fig. 3(c)]. For the ex-
amples shown in Figs. 3(a)-3(d), we used the same param-
eters as we used to calculate the growth rate w(g) in Fig.
1(b); i.e., here I'=0.126 and £=6. The width of the traveling
lamellar stripes is defined by a value of g that lies within the
interval between ¢, and ¢, [see Fig. 1(b)].

More “exotic” scenarios of traveling waves are illustrated
in Fig. 4, where we took the value of I' to be very close to
the value of f’i’, causing the A and B components to be
quite highly intermixed; i.e., the maximum value of the order
parameter is low, ¢,=0.09. Figures 4(a) and 4(b) show the
respective snapshots of the spatial distribution of the order
parameter ¢ and the height of the membrane at a fixed time
step (taken at late times); here, we choose 1'=0.143 and ¢
=8. This dynamic structure results from a superposition of
different domains of traveling waves. The time evolution of
the order parameter distribution along the x direction at a
fixed value along the y direction (y=10) is shown in Fig.
4(c). We emphasize that the actual realization of such a class
of dynamic structures strongly depends on the random seed
in the initial order parameter distribution, as well as on the
size of the sample.

For example, for the same parameters as in Fig. 4(a) but a
different random seed, we can observe dynamic structures
with similar features but with different morphologies and
topologies. The dependence on the random seed is illustrated
in Figs. 4(c)-4(e), in which we plot the evolution of the
order parameter distribution at y=10 along the x direction.
Figure 4(c) illustrates the time evolution of the order param-
eter along the marked dashed line for the simulation shown
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FIG. 4. (Color online) (a), (b)
Order parameter distribution and
the height of the membrane, re-
spectively, at =406 16 for the sys-
tem with '=0.143 and &=8. For
these parameters, I'{"'=0.144 15
and T5"=0.1067. (c)-(e) Evolu-
tion of order parameter distribu-
tion along the x direction at fixed
y=10. All three examples have the
same parameters as in (a) and (b).
The difference between the runs is
the different values of the initial
random seed in the order param-

eter distribution, which was taken
as a random fluctuation around its
average value (¢)=0, with stan-
dard deviation equal to 0.05. The
evolution is shown at late times,
where 75=1.1X10° and ¢,=0.09
[the scale bar is given in Fig. 2(a)]
in (a), (c), (d), and (e).
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in Fig. 4(a). In Figs. 4(d) and 4(e), all the parameters are the
same as in Fig. 4(c), with the only difference being the value
of the random seed in the initial fluctuations. The plots of the
time evolution in Figs. 4(c)-4(e) illustrate the differences
between the spatiotemporal patterns that appear in the same
system but with different initial conditions. We also note that
we observed the same dynamic behavior (i.e., similar pat-
terns, as well as the same strong dependence on the initial
random seed) for different values of ¢, provided that the
reaction rate coefficient is close to I'{""; we will point out the
relevant region on the phase diagram in the next section.
Finally, the last example (see Fig. 5) illustrates the sce-
nario where the amplitude of the initial random fluctuations
defines the final state of the system. In contrast to the previ-
ous example, where the value of the initial random seed af-
fected the traveling wave pattern within the system, in the
current example, the amplitude of the initial fluctuation de-
fines whether traveling or stationary patterns will appear in
the system. In Fig. 5, we set '=0.13, £=4.8, and choose the
initial order parameter distribution as a random fluctuation
around the completely mixed state, with the standard devia-
tion equal to 0.05 and 0.3 for the cases in Figs. 5(a) [5(b)]
and 5(c) [5(d)], respectively. In the first example {Figs. 5(a)
[5(b)]}, we observe a stationary Turing-like pattern. In con-
trast, in the second simulation example {Figs. 5(c) [5(d)]},
we observe a complex and rather disordered dynamic struc-

200

X

ture. We note that the intermixing is higher in Fig. 5(a) than
in Fig. 5(c) [¢y=0.2 in Fig. 5(a) and ¢,=0.33 in Fig. 5(c)].
From observations of the temporal evolution of the morphol-
ogy and the height variations shown in Figs. 5(c) and 5(d),
we conclude that this sample effectively consists of two
types of region. (Such a division into different regions is
somewhat ambiguous since there is no sharp boundary be-
tween these regions and they transform into one another with
time; the distinctions are made only to make the following
explanation of the dynamics more clear.) Within one region,
the components are highly intermixed and remain stationary
for some time. Within the other region, we observe traveling
waves; here, the intermixing is smaller and sets the scale
(¢9=0.33) for the whole sample.

For Fig. 5, we took the same system parameters as we
used to calculate the growth rate w(g) in Fig. 1(c). For these
parameters, there is a region of wave numbers ¢ {g
€ [q1,9>]; see Fig. 1(c)}, where Re[w(g)]>0 and Im[w(q)]
#0; therefore, traveling waves with characteristic wave
numbers within this region are expected to be observed.
There is also a region of higher wave numbers g {g
€[g,,q5]; see Fig. 1(c)}, where Re[w(g)]>0 but Im[w(q)]
=0; therefore, we expect to observe stationary Turing-like
patterns with a characteristic wave number within this re-
gion. In other words, according to the above linear stability
analysis, we can expect to observe either traveling waves, or
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a)

stationary Turing-like patterns, or the interaction of the
Turing-like and wave modes. Results of our computer simu-
lations (Fig. 5) are in agreement with the above predictions
of the linear stability analysis. In addition, the simulations
give us further insight into this behavior, namely, we found
that, if the initial fluctuations of the order parameter are
small, we observe stationary Turing-like patterns [as in Figs.
5(a) and 5(b)]. Interestingly, we observe that stationary
Turing-like patterns for the latter parameters are always
aligned along a single direction. On the other hand, if initial
fluctuations of the order parameter are large, we observe
structures that comprise both stationary patterns and travel-
ing waves [as in Figs. 5(c) and 5(d)]. According to our ob-
servations, the above dependence of the final structure on the
initial fluctuations is robust; we repeated the runs in Fig. 5
for four different values of the random seeds (but keeping the
same amplitude of the initial fluctuation of the order param-
eter) and obtained qualitatively the same structures.

C. Phase diagrams

In this section, we plot the phase diagrams and compare
the analytical predictions with the results of our computer
simulations. Figure 6 shows the phase diagram in the I'¢
plane. The solid (blue online) curve is the I'=T5"(&) curve;
along this curve, Re[w(g)]=0 and Im[w(g)]=0. If T
<T¥"(¢) {and therefore Re[w(g)]>0 and Im[w(q)]=0}, the
system exhibits stationary Turing-like patterns [see solid
line, Fig. 1(a)]. The dashed (red) line in Fig. 6 is the I’

PHYSICAL REVIEW E 75, 051906 (2007)

FIG. 5. (Color online) (a), (b)
Stationary order parameter distri-
bution and the height of the film,
respectively, for the system with
'=0.13 and ¢=4.8; here, ¢
=0.20 [the scale bar is given in
Fig. 2(a)] and t=4 X 10°. The ini-
tial order parameter distribution
was a random fluctuation around
its average value (¢@)=0, with the
standard deviation taken to be
equal to 0.05. (c), (d) Order pa-
rameter distribution and the height
of the film, respectively, at r=2
X 10° for the system with the
same parameters as in (a), (b);
here, ¢7=0.33 and the initial order
parameter distribution was a ran-
dom fluctuation around (¢)=0
with the standard deviation taken
to be equal to 0.3.

=I'¢"(¢) line. Along this wave bifurcation line, Re[w(q)]
=0 and Im[w(g)]#0 for some range of values of ¢g. If T
<T¢"(¢) {and therefore Re[w(g)]>0 and Im[w(g)]# 0}, the
system exhibits traveling waves, as in the example shown in
Fig. 1(b). The various discrete symbols mark the observed
locations of the uniform, flat solution (filled boxes), oscilla-
tions in space (i.e., stationary Turing-like patterns) (open dia-
monds), or oscillations in both space and time (filled circles).
Each data point represents three independent runs; in all the
runs, the initial order parameter distribution was taken as a

o0
o e e e e

0075 0.1 0125 015 0175 02 0225 025

FIG. 6. (Color online) Phase diagram in the I', £ plane; I’
=T{"(¢) along the dashed (red online) line and T'=T"S"(¢) along the
solid (blue) curve. Each simulation data point represents three in-
dependent runs. Filled boxes represent the uniform, flat solution,
open diamonds represent stationary Turing-like patterns, and filled
circles represent oscillations in both space and time.
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random fluctuation around the completely mixed state, with
the standard deviation taken to be equal to 0.05. We note
that, for zero surface tension, the analytically obtained phase
diagram in the I'¢ parameter space was given in Ref. [13].
The presence of the nonzero surface tension decreases the
region where the traveling waves can be observed and shifts
this region to lower values of I' and higher values of &.

Figure 6 shows that, for the small values of & namely, &
< &7 where €7 is defined from T'S™(&7")=T""", one can
observe either the flat uniform state [for I'=T5"(£)] or the
stationary Turing-like patterns [for I'<I'{"(¢)]. The travel-
ing wave solution is observed only if the direct coupling
between the reaction and the shape changes is sufficiently
strong (i.e., £= &), In the latter case, only traveling waves
are observed in the system if the reaction rate coefficient
satisfies the condition I'{"(§)<I'<T'{"". The most common
example of the traveling wave structure is given in Fig. 3.
Within the same region, but very close to the bifurcation line
F=F‘i’”, a variety of the more exotic traveling wave patterns
can occur. An example of these structures is shown in Fig. 4;
the actual realization depends on the initial conditions. For
such exotic patterns, the intermixing is very high, i.e., ¢
<l1.

We found that traveling waves can also occur if I’
<T5"(&) at relatively high values of ¢ [see filled circles on
the left of the I'y"(£) curve in Fig. 6]. We note that this
region of the phase diagram [namely, the region where I’
<T$"(¢) and €= &™) represents the region at which both
the traveling wave and Turing-like modes interact. As we
have noted earlier, the interaction between the traveling
waves and Turing-like patterns were studied less than the
interaction between any other different bifurcations [28]. For
intermediate values of & within this region (where the tran-
sition between the Turing-like and wave patterns occur), an
increase in the amplitude of the initial fluctuation of the or-
der parameter can lead to the appearance of traveling waves
instead of the Turing-like structure at such “boundary”
points. For example, at the boundary point é=6 and I'=0.1
(for the case shown in Fig. 6), we observe traveling waves in
all four additional independent runs when we choose the
standard deviation of the order parameter equal to 0.3 (in-
stead of stationary Turing-like patterns as marked in Fig. 6,
where the initial standard deviation was equal to 0.05). We
emphasize that the late-time dynamic state of the system
strongly depends on the initial fluctuations only at these
points of the phase diagram (i.e., at the boundary points in
the region where the Turing-like and wave structures inter-
act) or close to the traveling wave bifurcation line (see Fig.
4). In all the other points on the phase diagram, large
changes in the amplitude of the initial fluctuations of either
the order parameter or the height of the membrane do not
affect the late-time dynamics or stationary structures. Addi-
tional simulations showed that, for example, variations in the
initial conditions for the Turing-like structures affects only
the position of the lamellar stripes, but does not affect their
width, height, or the effective intermixing within the system.

The phase diagram in Fig. 6 reveals an important feature
of the system’s dynamic behavior: for the reactive rate coef-
ficients considered here, traveling waves can be observed

PHYSICAL REVIEW E 75, 051906 (2007)
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FIG. 7. (Color online) Dependence of & on the spontaneous
curvature H. Here, k=0.5, 0=0.05 for the solid curve, k=0.5, o
=0 for the dashed (blue online) curve, k=0.5, 0=0.15 for the dot-
dashed (red online) curve, and =1, 0=0.05 for the dotted (green
online) curve.

only if &= &7 Hence, it is of interest to determine how &
depends on the characteristics of the membrane. To address
this issue, in Fig. 7 we plot the dependence of £ on the
spontaneous curvature H for different values of the mem-
brane surface tension and bending elasticity. For each set of
parameters, we found the value of the &7 by numerically
solving the equation I'S™(&7)=T{"", where we first used the
full (nonasymptotic) expression for 1“;”"(5"”) and then we
checked that the asymptotic expression [Eq. (13)] gives the
identical results for the same parameters.

The solid curve in Fig. 7 shows &"#(H) for the reference
parameters we used in the above simulations (i.e., 0=0.05
and k=0.5); more specifically, the point on this curve at H
=0.2 gives the & that is an intersection of I'y"(¢) and I'{"
in the phase diagram shown in Fig. 6. The dashed and the
dot-dashed curves in Fig. 7 represent &"(H) for zero and for
relatively high (0=0.15) surface tension, respectively. One
can see that the functional dependence of &"(H) is the same
for both these limits; that is, &""(H) decreases for small H
and increases for higher H, with the minimum located ap-
proximately at H~0.6. However, the increase in surface ten-
sion leads to an increase in absolute value of the &

The dotted curve in Fig. 7 is for the case where 0=0.05
and k=1. By comparing this curve with the solid curve
(where 0=0.05 and k=0.5), we see that an increase in the
bending modulus k not only leads to a strong increase in the
value of the &', but also shifts the value of H at which the
&7H(H) curve has a minimum to a much lower value.

The above dependencies of &' on the system parameters
have a clear physical interpretation; namely, it is more diffi-
cult to generate traveling waves in stiffer membranes (higher
k) or membranes with higher surface tension. Consequently,
higher values of £ (i.e., stronger coupling between the reac-
tion and the shape of film) are needed for the traveling waves
to occur.

Finally, in Fig. 8 we plot the phase diagram in the I', o
parameter space for a fixed value of £=5. Here, the solid
(blue) curve corresponds to T:T;’“(U) and the dashed (red)
line corresponds to I'=T"{""(c). As in Fig. 6, the various dis-
crete symbols mark the observed locations of the uniform,
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FIG. 8. (Color online) Phase diagram in the I', o plane. T
=I"{""() along the dashed (red online) line and I'=T5"(c) along
the solid (blue) curve. Each simulation data point represents three
independent runs. Filled boxes represent the uniform, flat solution,
open diamonds represent stationary Turing-like patterns, and filled
circles represent oscillations in both space and time.

flat solution (filled boxes), oscillations in space (open dia-
monds), or oscillations in both space and time (filled circles).
Again, each data point represents three independent runs.
Figure 8 illustrates that, for the relatively large values of o,
such that o> ¢“"", the system forms only Turing-like pat-
terns [for [ <I'$(o)] or the flat, uniform state [for I’
BFE’”(O')]. Here, we define the critical value of the interfa-
cial tension o from T'{""(o“"")=T5"(o*"™).

Figure 8 also illustrates that for smaller values of o (i.e.,
for o< ¢*'™), and for I'=T"(c), we can observe either trav-
eling waves if l"<1"‘1'”’(0) or a mixed flat state if T’
=T<"(o). Finally, if o<0“" and I' <T'{"(0), according to
the linear stability analysis, we can expect both Turing-like
patterns and traveling waves. The simulation results show
that for the relatively small values of o within this region,
traveling waves are generated (filled circles in the left region
of the phase diagram in Fig. 8), while for the relatively high
values of ¢, we observe stationary Turing-like patterns (open
diamonds in the left region of the phase diagram). It is only
for the values of o on the boundary between these two re-
gions that we observe more complicated behavior, i.e., a
strong dependence of the final dynamical structure on the
amplitude of the initial fluctuation, similar to the scenario
described in Fig. 5. We note that in all the presented results
(i.e., see Figs. 6 and 8), Ff”" >F§”’ [29]. In other words, if
the region with the traveling waves exists in the parameter
space, it is always located next to the region in which the flat
completely intermixed membrane is stable, for all the system
parameters considered in this work. Therefore, the continu-
ous decrease in the value of I, starting from some very high
value (keeping all other parameters fixed), will drive the sys-
tem from the flat intermixed state to the state in which only
traveling waves can be observed, and only then to the state in
which both traveling waves and Turing-like patterns can oc-
curs.

The critical value of the lateral surface tension, o“’, can
be obtained analytically using Egs. (11) and (12); however,
since the expression for 0 is cumbersome, we only provide
the functional dependence of ¢“’" on the bending modulus &
for different vales of H, and ¢ (see Fig. 9). The solid and
dotted curves in Fig. 9 correspond to the values of é=5 and
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FIG. 9. (Color online) Dependence of 0" on the bending elas-
ticity «. Here, Hy=0.2, £€=5 for the solid curve, Hy=0.5, £€=5 for
the dashed (blue online) curve, Hy=0.9, £&=5 for the dot-dashed
(red online) curve, and Hy=0.2, £=8 for the dotted (green online)
curve.

8, respectively, while the value of H is fixed in both cases at
Hy=0.2. A comparison of these two curves provides a clear
physical interpretation of the data: the higher the value of &,
the larger the parameter space for which traveling waves can
be observed. In other words, for relatively high &, traveling
waves can be observed in membranes with relatively high
surface tensions and with relatively high bending elasticity
moduli. Moreover, if the value of £ is constant (here, we
choose ¢=5), but the spontaneous curvature is increased
moderately (from Hy=0.2 for the solid curve to H,=0.5 for
the dashed curve), the traveling waves can also be observed
in membranes with higher surface tension and with higher
bending elasticity modulus. However, if the spontaneous cur-
vature is increased even further (see dot-dashed curve, for
which Hy=0.9), the traveling waves can be observed for
relatively high surface tension, but only for very flexible
membranes.

To summarize, we detailed the behavior of reactive binary
membranes for different system parameters. In particular, we
defined critical values of 0" below which traveling waves
could be observed in the system. In addition, we pinpointed
the regions in the phase diagram where the late-time dy-
namic state of the system can strongly depend on the initial
fluctuations. In the next section, we illustrate how the dy-
namics of such reactive membranes are changed if we add
the third, nonreactive component C into the membrane.

D. Three-component membranes

In this section, we simulate the dynamics of the three-
component system. First, we note that, within the binary do-
mains, the linear stability analysis and the diagrams of the
dynamic states remain the same as given above. In the other
words, we can readily use the above results to choose the
specific dynamic behavior of the AB reactive component and
to probe how that behavior changes with the addition of the
nonreactive C component.

Figure 10 illustrates one of the examples of the evolution
of the three-component membrane. As initial conditions, we
choose a flat membrane with all three components being
mixed, i.e., h(x,y)=0, (¢(x,y))=0, and (H(x,y))=1); here,
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Y is the volume fraction of the nonreactive C component
(more specifically, ¢,=0.27 in Fig. 10). The reaction param-
eters for the AB blend are chosen as '=0.126 and £=0; i.e.,
the binary AB domains correspond to the simulations shown
in Fig. 2. Consequently, the composition and height patterns
within the AB domains in the three-component membrane
(Fig. 10) are essentially the same as in the two-component
reactive membrane (Fig. 2). The only difference is that AB
lamellar domains lying close to C regions now preferentially
orient perpendicular to the C domains. This behavior can be
understood by recalling that C is equally incompatible with
both A and B, and thus presents a neutral interface to the AB
stripes; it is known that lamellar layers orient perpendicular
to such neutral surfaces [30]. The snapshot in Fig. 10 corre-
sponds to intermediate times in the evolution of the mem-
brane. At later times, the phase-separation process continues,
and therefore the characteristic size of the C domain contin-
ues to grow, while the total number of the C domains de-
creases. The AB reactive regions are slaved to the evolution
of the C domains, i.e., AB lamellae rearrange to preferen-
tially orient perpendicular to the C interfaces at each moment
of time. Due to such rearranging of the lamellar-like struc-
tures, the presence of the C component prevents the dynam-
ics within the AB domains from freezing, which otherwise
occurs in the pure AB reactive membrane.

Figure 11 provides two other examples of the evolution of
the three-component membrane. In both cases in Fig. 11, the
reaction parameters for the AB blend are chosen as T’
=0.126 and &=6, being the same as those used to generate
Fig. 3. Thus, it is anticipated that traveling waves will appear
within the sample. In Fig. 11(a) [11(b)], we again choose as
initial conditions a flat membrane with all three components
being mixed [i.e., h(x,y)=0, {(¢(x,y))=0 and {((x,y))
=0.27]. The white arrows in Fig. 11(a) indicate the directions
of the propagation of the traveling waves at the specific re-
gions within the sample. Here, the traveling waves are
strictly confined between the C domains. The boundaries of
the C domains, however, continue to evolve due to the coars-
ening of the C component. The latter fact strongly affects the
propagation of the traveling waves and prevents the appear-
ance of a coherent traveling pattern, as seen in Fig. 3.

Finally, we considered the evolution of the above systems
with modified initial conditions for the order parameter . In
particular, we assumed that the domain of C already exists at
the beginning of the simulations. That is, at the center of the
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FIG. 10. (Color online) (a) Or-
der parameter distribution within
the membrane at the simulation
time step r=4 X 10*; the A and B
components are shown according
to the scale bar in Fig. 2(a) with
¢0=0.69. The C component is
shown in gray (pink online). (b)
The height of the membrane for
the same run (and the same simu-
lation time) as in (a). Here, I’
=0.126, £=0, and the concentra-
tion of the C component is ¥
=0.27.

simulation box, we initially set (x,y)=1 within a circle of
radius R=95 lattice sites and set ¢(x,y)=0 everywhere else.
The evolution at relatively late times in this case is shown in
Figs. 11(c) and 11(d). The white arrows show the directions
of propagation of the traveling waves in specific regions. In
this example, the waves propagate from the lower left corner
of the sample toward the C domain. Close to the boundary of
the C domain, the AB stripes reorient perpendicular to the C
domains and therefore form a checkerboard pattern along the
C boundary, which meets a traveling front [see enlarged im-
age of the part of the checkerboard pattern in the bottom
inset of the Figure 11(d)]. The top inset in Fig. 11(d) illus-
trates the propagation of the traveling waves after the C do-
mains. Here, the traveling patterns are seen to originate from
the upper boundary of the C domain and propagate away
from it. Due to the imposed periodic boundary conditions,
the stripes are bent to different sides, so that defects appear
along the upper diagonal of the sample. We note that the
choices of a different initial random seed or different sizes of
the C domain or the simulation box affect only the direction
of the wave propagation throughout the sample; the main
features described above (i.e., the formation of the checker-
board pattern along the boundary of the C domain, which
meets a traveling front, and the appearance of traveling de-
fects above the C domain) remains robust in all our simula-
tions. These features are also present in the example shown
in Fig. 11(a) [11(b)]; they are, however, much less distinct
since the C domains are smaller and the traveling waves
propagate in different directions.

IV. CONCLUSIONS

Using theory and numerical simulations, we examined the
behavior of reactive, stimuli-responsive membranes, which
comprise two or three components. An external stimulus ini-
tiates a chemical reaction within the membrane that intercon-
verts two of the components, A and B, which have specified
spontaneous curvatures. As noted in Refs. [12,13], such an
interconversion reaction can be understood, for example, as
an isomerizationlike chemical transformation, initiated by an
external light. The third component C is assumed to be non-
reactive and is incompatible with the A and B components.
The binary part of our model is based on the model proposed
by Reigada et al. [13]; we have, however, extended the latter
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b)

FIG. 11. (Color online) (a), (b) Order parameter distribution and the height of the membrane, respectively, at the simulation time step
t=300 140. The A and B components are shown according to the scale bar in Fig. 2(a) with ¢;=0.28. The C component is shown in gray
(pink online). Here, I'=0.126, £=6, and the concentration of the C component is )y=0.27. (c), (d) Order parameter distribution and the
height of the membrane, respectively, at the simulation time step =100 140. Here, I'=0.126, £=6, and in the initial condition we choose the
C component to be located within a circle of the radius R=95 in the center of the simulation box. In (a) and (c), the white arrows show the

local directions of propagation of the traveling waves.

approach by explicitly including the effects of the lateral
surface tension of the membrane. For the two-component
(AB) reactive membranes, we calculated phase diagrams in
terms of different parameters and showed that the surface
tension of the membrane strongly affects the location of the
phase boundaries. For example, we defined critical values of
the lateral surface tension below which the traveling waves
could be observed in the system. In addition, we pinpointed
the regions on the phase diagram where the late-time behav-
ior strongly depends on the initial fluctuations, i.e., where
such a reactive system has some memory of its prior state.
For the case of the three-component reactive membrane,
we illustrated how the presence of the nonreactive compo-
nent affects the final dynamical patterns within the mem-
brane. More specifically, we showed that the AB reactive

domains are slaved to the evolution of the C domains, i.e.,
the AB patterns rearrange to preferentially orient perpendicu-
lar to the boundaries of the C domains at each moment of
time. Due to the latter effect, the C component prevents the
evolution within the AB domains from freezing (if such re-
action parameters are chosen that stationary patterns occur
within the AB regions.)

In examining the ternary systems, we also illustrated that
the nonreactive C domains strongly affect the propagation of
the traveling waves in the reactive membrane. This behavior
can potentially be used in applications of the synthetic mem-
branes. For example, if the C component is an impurity, a
change in the dynamics or direction of the traveling waves
would signal the presence of impurities in the sample. If the
C domain is relatively large and if there is a small number of
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such domains, it might be possible to use the change in the
traveling waves dynamics to remotely track the position of
the individual C domains within the membrane.

We also showed that the topology of the responsive, reac-
tive membrane strongly depends on the local composition,
the reaction parameters, the bending modulus, and the sur-
face tension of the membrane. Thus, through the judicious
choice of parameters, the “designer” can potentially create
stationary or traveling relief patterns of desired topologies.
Moreover, additional preliminary results (which will be re-
ported in a separate study) show that the dynamics and the
local topologies of such model reactive membranes strongly
depend on externally induced gradients in the system, such
as a spatial gradient in the reaction rate coefficients. We

PHYSICAL REVIEW E 75, 051906 (2007)

found that, in response to even small changes in this gradi-
ent, the reactive membrane undergoes dynamic reconstruc-
tion. In the case of the ternary membrane, it might be pos-
sible to exploit such “gradient sensing” to control the
transport of the C component within the membrane. The be-
havior would permit a cleaning of the membrane if the C
component is an impurity or targeted delivery of the C com-
ponent to specific locations. Such gradient sensing and dy-
namic reconstruction will be the subjects of separate studies.
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